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J. Phys. A: Math. Gen. 14 (1981) 459-469. Printed in Great Britain 

Infinite- and finite-spin Ising chains at low temperatures 

M R Davies, C K Harris and R B Stinchcombe 
Department of Theoretical Physics, 1 Keble Road, Oxford OX1 3NP, UK 

Received 23 June 1980 

Abstract. Transfer matrix methods are used to ohtain the partition function and correlation 
length of Ising chains at low temperatures. For the infinite-spin chain, asymptotically exact 
eigenvalues and eigenvectors are obtained from an iteration scheme, and from a secular 
equation method. It is also shown how the Ising chain for general spin S (including S-. m) 
may he treated using a 2 x 2 transfer matrix. 

J /KBT >> 1) the inverse correlation length, in units of the 
spin spacing, is 

For low temperatures ( K  

[ - I =  4 s  e-2K + ~ ( e - ~ ~ )  (finite S) 

= 8~ e-zK( In 4~ + y + o( y)) (infinite spin) 

where Y is Euler’s constant 

1. Introduction 

The infinite- (‘classical’) and finite-spin Ising chains considered in this paper are among 
the simplest interactingspin models. As is well known (Stanley 1971, Domb 1960) they 
can be treated using commuting transfer matrices whose largest eigenvalues give the 
partition function and correlation length. 

These eigenvalues can be easily found for the S X S matrices occurring for low finite 
spin S (Suzuki et a1 1967). For general or infinite S the problem is much more difficult. 
The classical model has been treated for zero field by Thompson (1968, 1972) and? as 
the limit of the anisotropic Heisenberg model, by Joyce (1967a, b) and by Rae (1974, 
1975a, b). From this work it is known that at low temperatures the correlation length 6 
(in units of the spin spacing) has the form 

[- I=  f ( ~ )  e-2K K >> 1 (1) 
where (in terms of the exchange constant J and temperature T )  

K = J/KBT 

and f(K) is a prefactor estimated by Thompson (1968) as about 25K for K between 5 
and 8. In this paper it will be shown that 

[-‘=8 l n 4 K + y + O  (InKK)) - e-2K 4 (3) 

where y=O+577 is Euler’s constant. The prefactor in (3) agrees with Thompson’s 
numerical estimate for K in (5, 8). 
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The result (3) may be arrived at by exploiting the properties of the integral equation 
for the eigenvalues of the transfer matrix in any of three ways. The first is an iteration 
scheme, which converges rapidly because of the dominance of the two largest eigen- 
values which are associated with eigenfunctions of different symmetry. The second 
method generates asymptotic expansions for the eigenfunctions, which are then 
inserted into an exact result for the difference of the two largest eigenvalues. This 
method also gives as the solution of a truncated n X n determinantal secular equation 
the first n terms in an asymptotic expansion for the largest eigenvalue A l .  The first five 
terms are 

The Nth power of A 1  is the partition function Z of the N-spin chain. 
The third method of obtaining (3) uses a trick which reduces the problem to the 

consideration of a 2 x 2 transfer matrix. This reduction holds also for arbitrary finite 
spin S,  where it leads to the following result for the inverse correlation length 

t-'= 4 s  e-2K + o ( ~ - ~ ~ ) ,  ( 5 )  

which is in agreement with a result of Sneddon and Stinchcombe (1978). 
The paper is laid out as follows. Section 2 gives the basic properties of the system 

and of the eigenvalue problem, leading to the iteration scheme and to the exact result 
for the difference of the two largest eigenvalues. Section 3 gives the eigenvalues for the 
infinite-spin chain from the iteration scheme and from the exact result and asymptotic 
expansion of the eigenfunctions. Section 4 uses the 2 x 2 matrix method to obtain the 
correlation length of the finite-spin chain and makes contact with the results of the 
preceding sections for the correlation length of the infinite-spin chain. 

2. Basic properties 

The Ising chain has Hamiltonian 
N 

H = - J v,,cT~++~ V N + l =  [+1 
n = l  

where v,, is the z component of the (normalised) spin at site n. The transfer matrix T 
has as its elements the probabilities of configurations (gn, (T,+~) = (x, y )  of neighbouring 
spins 

Txy = eKXy ( 7 )  

with K given by (2). If A l ,  h2,  . . . label the eigenvalues of T in order of decreasing size, 
.and t+bl, t+b2, . , , are the corresponding eigenfunctions, it can be shown that the partition 
function and longest correlation length of long chains (N + 00) are given by 

Z = h Y  (8) 

5 = ( -ln(A2/Al))-1. (9) 

The symmetry properties of (7) (invariance under ( x ,  y )  + (y, x )  or ( -  x, - y ) ,  etc) 
imply that the eigenfunctions are of even or odd parity. The eigenvalue equation for the 
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even and odd functions ($+ and $-) can then be reduced to 
1 

A*$*(x) = lo dy(eKxy f e-Kx')$*(y) = 2*$*. 

Except for a few obvious exceptions towards the end of this paper we work hereafter 
with spin projections x, y only in the positive interval (0, 1). 

In ( lo) ,  and for the rest of this section, we write integral forms appropriate to the 
infinite-spin case. However, all the formal conclusions of this section apply equally to 
the finite-spin case provided only that any integral, such as that in (lo),  is replaced by a 
sum over discrete non-negative spin projections ranging up to 1 through steps of size 
1 /s. 

Each of the linear operators 2?* in (10) satisfies the conditions for their having 
complete sets of orthogonal eigenfunctions in the interval (0 , l ) .  Thus if $:, 4; are two 
eigenfunctions of 2+ associated with non-degenerate eigenvalues A :, A l, 

1 

($:, 4;)  = I dx $: (x)$z(x) = 0 
0 

(similarly for eigenfunctions of 2-). It also follows from (10) that 

These exact statements will be useful in later developments. 
The essential physical point to be exploited is that the Ising chain is critical (i.e. its 

correlation length diverges) at T = 0. Thus, from (9), in the low-temperature regime in 
which we are interested (K >> 1, which is assumed throughout this paper) the two largest 
eigenvalues A1, A 2  have to be very nearly degenerate. Since no crossover phenomena 
are expected in the critical behaviour we can also suppose (following Riedel and 
Wegner (1969) and Riedel(l971)) that all other eigenvalues will be much smaller. The 
nature of the kernels in (10) (exp(Kxy) >> exp( -Kxy) > 0 for x, y both positive) suggests 
that the nearly degenerate eigenvalues A l ,  A 2  are associated respectively with even and 
odd eigenfunctions (hereafter written in either of the equivalent forms $l or $?, $ 2  or 
$;). All of these expectations are borne out by subsequent calculations. 

So, if the integral operator 2+ is applied n times to an arbitrary linear combination 
4; of even eigenfunctions (i.e. to an even function 4 ; )  we obtain 

Because A 1  is much larger than any other A:, 4: rapidly approaches the eigenfunction 
$? associated with the largest eigenvalue A l ,  except in freak cases where 4; has no 
overlap (co=O) with the required eigenfunction. This is the basis of the iteration 
scheme. 

It is also easy to deduce the inequality 

(4:, 2+4;)/(4:, 4:)sAl. (14) 

Thus the ratio on the left-hand side of (14) provides a lower bound for the largest 
eigenvalue A l  and can be used to set up a variational or iterative attack on the problem 



462 M R Davies, C K Harris and R B Stinchcombe 

(see also McGurn and Scalapino 1975). A more convenient form for the iterative 
approach is to use the sequence 

~ : + I ( ~ ) / ~ J L ( ~ ) = A Y ' ) ,  (15) 

which converges quickly to the largest eigenvalue A 
Similarly, application of the integral operator 9- to an odd seed function C#J; 

generates a rapidly convergent sequence (4 ; )  of approximations to the odd eigen- 
function 4; and through 

to the second eigenvalue A z .  
In the infinite-spin case we can formally identify, from Joyce (1967a), A I  and A 2  with 

the radial spheroidal wavefunctions iyelmll( - iK, 1) for (m,  I )  = (0,O) and ( 0 , l )  respec- 
tively (the notation is that of Morse and Feshbach 1953). The iteration scheme thus 
provides a tractable and quickly convergent sequence of approximations to these 
quantities for large K. 

3. Eigenfunctions and eigenvalues for low-temperature infinite-spin chains 

The iteration scheme just described, starting from the seed functions 

4; = (S(x - l)*S(x + l)), (17) 

yields the following sequence of approximations for the ratio of the largest eigenvalues 
of the infinite-spin chain: 

(hz/A = 1 - 8K e-2K( In 4 K  + y + O( y)) 
where y = 0.577 is Euler's constant. Equation (20) leads at once to the result (3) for the 
inverse correlation length. The asymptotic evaluation of integrals contributing to (19), 
(20) and to later results is outlined in appendix 1. We discuss the reasons for the quoted 
errors elsewhere. 

The sequence of approximations to the eigenfunctions $:, I); generated from (17), 
or from any other reasonable even and odd initial functions, suggests the following 
forms for the eigenfunctions: 

(for convenience we omit the subscripts 1 , 2  on $', $-). By inserting these forms into 
(10) we can find self-consistent equations for the c: and for the eigenvalues 
A + (  = A1), A- (  = A*). If we neglect terms smaller by O(e-2K) than the leading one, A -  
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and c, satisfy the same equations as A +  and c:, so 

c: = c i ( l + ~ ( e - ' ~ ) )  

A+=A-(1+O(e-2K)). 

The difference of A - from A + comes, of course, from such neglected terms but, as will be 
discussed later, we can nevertheless arrive at the difference by using the eigenfunctions 
(21), without the exponentially small corrections, in the exact result (12). 

The self-consistent equations resulting from (21) and (10) yield a secular equation 
for the eigenvalues A *, which gives a very convenient way of arriving at results like (4). 
We now outline this procedure. 

Inserting (21) into (lo), neglecting terms smaller than the leading term by O(eVzK) 
and equating coefficients of [$( 1 - x)]"' gives 

where 

p = A  e-K2K E 1/4K. (25) 

The quantities p are the eigenvalues of the matrix M defined by (24). The secular 
equation determining them has the form 

I1-p E 2E2 6 E 3  * . .I 
1 2 ~ - p  6 e 2  2 4 ~ ~  
1 3.5 12e2-p 6 0 ~ ~  

0 =/  

4E 20E2 120E3- CL 

Since columns of M fall off in size like en ,  to arrive at p to order (l/K)'-' it is only 
necessary to consider the top left-hand n x n corner block of the secular determinant, as 
can be seen by considering its expansion by a column outside of the n x n corner. For 
example, the 5 X 5 block yields for the largest eigenvalue 

p = 1 + ~ + 3 ~ ' + 1 4 ~ ~ + 8 5 ~ ~ + 0 ( ~ ' )  (27) 

which implies the result (4) for the Nth root of the partition function. 
It is easy to show that the corresponding eigenvector has 

cm =co( l+O( l /K) )  for any m. (28) 

The secular equation (26) has other solutions for p besides the largest one given in 
(27). These correspond to the odd and even eigenvalues (not split in this approxima- 
tion) other than A T, A T ,  and they are of order E which confirms the assumption that at 
low temperatures all other eigenvalues are much smaller than A T ,  A T .  

Details of the method of arriving at the splitting of the eigenvalues, by putting the 
asymptotic expansions (21) and (28) for the eigenfunctions into the exact result (12), are 
given in appendix 2. This gives a second way of arriving at (20) and the result (3) for the 
correlation length, and shows clearly the origin of the errors quoted in (20). 

In the next section we consider the finite-spin chain, using a method which allows 
contact to be made with the above results for the infinite-spin chain and with the 
standard method for the spin-$ case. 
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4. Relationship between spin-;, spin S, and infinite-spin correlation lengths 

We now consider general spin S ,  with the v ' s  still normalised to unity. For large 
separations r, the correlation function is 

(giCi+r)  = I ; : ~ ( A ~ / A ~ ) ' .  (29) 
A z  and A 1  are again the next and largest eigenvalues of the transfer matrix T which is 
now a discrete (2.9 + 1) X ( 2 s  + 1) matrix with elements 

T k ,  = exp(Kk1) (30) 
where k, 1 run over the 2 s  + 1 values ( -  1 + r / S )  where r is any integer from zero to 2s.  
In terms of the matrix U of normalised column eigenvectors of T, the matrix Z is 

z= UTvU. (31) 
Equation (29) implies the relationship (9). 

The general spin case can be discussed in terms of a 2 x 2 transfer matrix by replacing 
every rth spin v in the s p i n 3  chain by a spin-; ( p )  as shown in figure 1. The resulting 

-c- . . ' -2-c)- . . . -z-z-. . . . 
1 1  4.1 p2r.1 

Figure 1. Construction for the discussion of the spin-S chain in terms of a 2 X 2 transfer 
matrix. Every rth spin has been replaced by a spin i. 

2 x 2 transfer matrix g between adjacent spins p has elements 

where pl (  = * 1) and pr+l(  = -+ 1) label the states of the two spins 4. It can be seen that 

We now show that for large r 

(pipr+i) = A(K)(rlUr+i) (35) 

where A ( K )  is a constant independent of r. This is because, with t l ,  fz the two 
eigenvalues of Y, 

But 

T'= Uh'UT (37) 
where A is the matrix of eigenvalues of T, and for large r (37) is dominated by the 
contribution from the two largest eigenvalues A 1, AZ.  The associated eigenvectors 
occurring in U are respectively of even and odd parity so, for large r, 

( (Flpr+1) = (ulz/ u ~ ~ ) ~ ( A ~ / A ~ ) '  (38) 
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which, because of (29), implies the result (35) and in particular, using (36) 

h z / h l  = lim(fz/tl)l’r. 
r-co (39) 

The ratio of eigenvalues can now be worked out readily from (36). As K + CO, the 
leading term in ,Tll is (T1J = erK. The leading term in Fl,-l takes the general form 

T11T11 . .  . Tijq,-iT-1,-1.. . T-1,-1. 

There are 2S(r  - 1) such terms, each of which is erKe-2K. Thus 

t2/tl = 1 - 4 ~ ( r  - 1) e-zK + o ( ~ - ~ ~ ) ,  

Az /h l=  1-4s  eCZK +O(e-4K). (41) 

(40) 
so that, using (39), 

The inverse correlation length of the finite-spin system is therefore as given in ( 5 ) .  
This agrees with a result of Sneddon and Stinchcombe (1978), the proof of which also 
indicated a relationship, which (35) makes precise, between spin-; and general-spin 
systems. 

The ideas of the above method, and in particular the results ( 3 9 ,  (36) and (39), also 
apply in the case of infinite spin. Here, of course, sums become integrals and in place of 
(32) we have 

1 1 

yglgr+l = I, dx2. . I_, dxr exp[K(p1xz+xZx3+ . . . +xr/-~r+l)]. (42) 

We can proceed, as above, to work out h 2 / h l  using (39) and (36), which requires the 
evaluation, for large K and large r, of Fll and  TI,-^, This calculation is most easily 
carried out (appendix 3) by using ( 4 2 )  for the case r even and integrating over the 
variables xi with i even and then asymptotically evaluating the remaining integrals by 
methods like those already used in appendices 1 and 2. The results are (ignoring 
exponentially small corrections) 

yll = ( e K / 2 ~ ) ‘ - ’  (43) 

Using (36) and (39) we again recover the result (20) and hence the result (3) for the 
correlation length of the infinite-spin system: 

5. Summary 

The principal results we have obtained, namely the correlation length and partition 
function of the finite-spin Ising chain and the correlation length of the finite-spin chain, 
have already been quoted as equations (3), (4) and (5) of the introduction. They are 
valid in the low-temperature limit. 



466 M R Davies, C K Harris and R B Stinchcornbe 

The most difficult result to obtain, that for the infinite-spin correlation lengths, has 
been arrived at by three different methods. The first, the iterative method, is set up so 
that it must converge quickly. The method exploiting the exact result (12) is not 
sensitive to the difference between the nearly degenerate eigenfunctions. We con- 
structed a method for arriving at the asymptotic expansion of these functions, but only 
exploited the resulting secular equation to obtain the long series (4) for the partition 
function. The third method for arriving at the correlation length proceeds by relating 
the correlation functions of spin-3 and arbitrary spin systems. As well as recovering the 
correlation lengths of the infinite-spin chain we obtain it for general finite spin S, 
making contact with results of Sneddon and Stinchcombe (1978). 

The methods have individual advantages which may make one of them more suited 
than the others in particular sensitive systems. The classical anisotropic Heisenberg 
model is presently being considered from this point of view. 

Appendix 1. Asymptotic evaluation of integrals occurring in the iteration approach 

When LZFe’ and 9- are applied to the seed functions (17) we obtain 

4: ( x )  = eKx f e-Kx 

2 sinh K ( l  + x )  2 sinh K( l  - x )  
-A- 

A 

K ( l  - x )  * 
4:cx,= K ( l + x )  

Insertion into (15) and (16) gives the result (18) for A?’/“’’ 
required to obtain (19) and (20) are 

2 sinh K (  1 + y )  1 

4 ( 1) = 1- d y ( eK” * e-Ky ) 
K ( I + Y )  

1 

4: (1) =:I dy(4: b))’. 
-1 

For large K. 4; (1) are dominated by the following parts 

eK 4; (1) =-( I~  * I2 * In 2) K 

where 

Il = 1 dy- e2KY = -( eZK 1 + O( i)) lo l + y  4K 
1 

I2 = lo ds(1- e-2Ks)/s = In 2K + y + O(ePK), 

(A.5) 

(A.6) 

(A.7) 

the evaluation of such integrals being carried out by the usual Laplace method of 
asymptotic analysis as given, for example, by de Bruijn (1958) and Murray (1974). y is 
Euler’s constant. These results are already sufficient to give (19). 

The dominant contributions to 4:(1) are 
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where 
1 e 2 K ~  e2K 

13= lo dy---(l+O(i)) (l+y)'-8K 

= (In 4K + y + O ( i ) ) .  

(A.9) 

(A.lO) 

Equation (20) follows in a straightforward manner from these results. 

Appendix 2. Derivation of the correlation length using an exact result for the 
eigenvalue splitting 

Insertion of the asymptotic expansion (20) for the eigenfunctions into the exact result 
(12) gives the following expression for the eigenvalue splitting: 

(A.ll)  
- 2Xnmcncm2-(n+m) e-K j,' ds s,' dt  s n t m  e-Ksr + . . . 

A 2 - A l =  2 - ( n + m )  1 
nm n m lo ds e-2Kssn+m + . . . 

where 
N1 E C ~ i 2 - ~ ~ ( 8 / 8 (  - K))"Ji(K) 

N2 1 ~ , , ~ ~ 2 - ( ~ + ~ ) ( 8 / 8 (  - K))"Jz(K) 

m 

n > m  

These expressions involve the integrals 

(n  -m - l)! 
- n - m + l  + ~ ( e - ~ ) )  

1 
=((n-m)K K 

(A. 12) 

(A.13) 

(A.14) 

(A.15) 

(A.16) 

( n  > m). (A.17) 

Using (28) and discarding exponentially small terms we then obtain 

- 2 e-KIK-'(ln K + y )  + 2Zn>o(nK)-' + O[(ln K)/K21] 
$K-' + O(K-') (A. 18) A z - A l =  

= -4e-K ( In 4K , + y + O ( Y ) ) .  (A.19) 

Dividing by A 1  (which is given by (25) and (27)) we thus recover the result (20). 
The error quoted in (A.19) can be verified by a careful consideration of all the terms 

discarded to obtain the result. The discarded terms include exponentially small terms 
already omitted from (A. 11) (which include those terms omitted in (21) which would be 
required to make i,b" have the appropriate symmetry). The leading corrections come 
from the m = 1 term in NI. 
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Appendix 3. Transfer matrix between spins $ in a classical Ising chain 

We here evaluate the two independent elements Yll, of the transfer matrix (42) 
for two spins-? ( F ~ ,  pr+l) separated by r - 1 classical spin vectors with z components 
x2, . . . , xr. 

We suppose that r is even (equal to 2m) and integrate over x2, x4, . . . xZm to obtain 

1 

. 1  "1 

(A.20) 

where 

(A.21) 

The greatest contribution to Yll will occur when all the x's are near one. We 
therefore discard the negative half of each integral and define z = 1 -x. The following 
types of term arise: 

(A.22) 

Retaining only the leading term in the expansion, these can be easily integrated to yield 

,T1l = (e2K/4Kz)m-1(1 +O(K-')). (A.23) 

Next we consider the leading terms in Y1,-1, There will be m - 3 terms where the 
first 1 x's are in the range (0, 1) and the last m - 1 - 1 are in the range ( -  1 , O )  (with 1 and 
m - I  - 1 both non-zero), plus the two 'end' terms 1 = 0 and 1 = m - 1. The contribution 
from the 'end' terms need not be considered further since we shall eventually take r 
large (therefore m large) to obtain h z / h  using equation (39). In each of the m - 3 other 
terms put x = 1 - z for the first Ix's and x = -(1- z )  for the rest. To compare Y1,-1 with 
Tll we then have to compare, for each of the m - 3 terms, 

J3z10 d z i l o  d Z f + l  [ ~ - - ~ ( Z ~ - ~ + Z ~ ) ] K ( Z ~ + ~ - Z ~ ) [ ~ - ~ ( Z ~ + ~ + Z ~ + ~ ) ]  

with 

- K z  

(A.24) e '2 sinh K(zf+l  - z J  e-Kzt+l 1 1 

(A.25) 

(A.26) 

(where the subscripts are now such that zl  = 1 -xzf+l, etc). Note that in (A.24) and 
(A.25) we can discard each zfPl  and z [ + ~  in the the denominators since they are each 
associated with a factor 1/K by virtue of the exponents e-2Krt-1, e-2Kzt+z in the integrals 
over . z - ~ ,  . ~ l + ~ .  Changing variables to U = z1+1- zl, U = zl+l+ zl and expanding the 
denominators (1 -&zf), (1 - i ~ l + ~ )  (A.24) becomes 

m a ?  

J3 = C f 4-'""'( - 1 ) L 2 n C a m C p l a + P , n + m - a - p  (A.27) 
n = O  m = O  a=O p=O 
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where 

(A.28) 

= 1 ~ , + ~ , , 0 + 0 ( 1 / ~ ~ )  (nl, n d  f (0,1) (A.29) 

Io,l = Il,o+O(ln K/K3). (A.30) 

Using (A.29) and (A.30) the only integral needed to evaluate (A.27) is 

In,$ = - K2 (ln2K+y+O($)) n '=O 

=-(-+O(e-K)) 1 1  
K* n' 

Thus, from the (m - 3) terms, we find the result 

n ' 2  1. 

J 3  In K -- 91'-1 - (m+0(1))-=4K e-2K(ln4K + y + O ( F ) ) ( r + O ( l ) ) .  
91 , l  J4  

(A.31) 

(A.32) 

(A.33) 

Equations (A.23) and (A.33) yield the results (43) and (44) quoted in the text, which 
lead to the correlation length (45). 
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